Plan for Christmas Card – Improvements.

For the final week we are going to convert the Christmas Card into a Christmas Game.

We will be starting with the Christmas Card that we made last week, if you weren’t there or want to start with the same one that I will be using, have a look at the bottom of this document, I have added instructions on how to get it.

The Plan for this week.

We will be adding some additional Sprites. We will be using Scratch Sprites rather than drawing our own to save time.

  • A sprite for Santa’s sleigh
    • This will move backwards and forward across the top of the screen
  • A sprite for the Presents
    • This will fall from Santa’s sleigh to the bottom of the screen, not directly down though.
    • This sprite will have many costumes.
  • As sprite for you
    • You will be able to move Left and Right across the bottom of the screen to try and catch the falling presents.

The Sleigh Sprite

Scratch does not have a sleigh sprite, so I used the reindeer.

He needs to start on the top left of the screen and move all the way to the top right of the screen and then turn around and go back to the top left, he will just keep doing this.

The code might look something like this:

The Present Sprite

We might have to draw this one.

The present Sprite will start from wherever the Sleigh Sprite is glide down to a random place at the bottom of the Screen, you can make the Present a random size as well to make it more interesting.

The is a Scratch block to put one Sprite in the same place as another Sprite So the code to move down the screen will look something like this:

There will also be code to count the number of presents caught. So, if the Present Sprite touches you, it will count as being caught, so you can increase your score.

When the present is caught you can change to a random costume to display the unwrapped present.

I’ll let you figure out this code as a little challenge (I haven’t done it yet 😊 )

You Sprite

This is the one that catches the presents. I used the Scratch cat, finally.

Not much code for this one, he just needs to move left or right using the left or right keys on the keyboard. So, something like this:

Getting the Christmas Card project.

https://scratch.mit.edu

Login with user name AthenryAdvancers and Password Advancers

Select My Stuff and then click the See Inside button for the ClassVersion-ChritmasCard

You will then have to save it to your device, select File – Save to your computer, so you can work on your version.

Now you will have to open Scratch 3 on your device and open the file you just saved.

This week’s challenge to create a Christmas Card.

This will be an interactive Christmas Card.

  1. A nice background with Snow, Christmas Trees, a house.
    1. We might use different Sprites for the Trees.
  2. Flashing lights on the House and the Tree.
  3. Falling snow.
  4. Snow building up on the ground.
  5. An animated Snowman.

Snowflakes

To make it even more interesting, we are going to make the snowflakes different sizes and fall at different rates depending on how big they are.

We will use the clone functionality to make the snowflakes.

Each clone will pick a random size and will glide to the bottom of the screen, how fast if glides will be related to how big or small it is.

The snowflake is going to be quite hard to draw as it will be a small white dot on a white background, so we will be careful.

The building up on the ground part, is quite easy, we just pick a random Y value to stop at, as long as it is close to the bottom of the screen we should be ok.

Flashing Lights or Tree Sprites

Again, these might be quite difficult to draw as we have to draw them over the background and get them to be over the Trees?

If we draw the complete Tree in the Sprite I think it is going to be a lot easier.

Snowflake code

Flashing light code

Modellers – Game Controller Part 2 – Week 3

Hi folks, thanks again for another fun session today. We continued working on our game controller, moving the thumbsticks into place and creating a D-pad and template button. Here are my video notes:

Here’s a link to the folder where all our files. You’ll find a new file in there called controller_2.blend, containing everything we did this week.

This week’s Challenge – To build a Calculator.

I know Windows has a Calculator, but we are going to build our own. This will give you an idea of how real Calculators actually work.

The Calculator should be able to:

1. Add, Subtract, Multiply and Divide 2 numbers.

2. Be able to work with decimal points (2.5 for example).

3. Display the sum and the result on the screen.

4. Have a “clear” button to reset everything ready for the next calculation.

Let’s look at the steps that you need for a calculation

1. Clear the variables.

2. Click on the numbers for the first number.

3. Click on the operator you want to use.

4. Click on the numbers for the second number.

5. Click on the equals button.

6. Display the result.

Hint: When you click on the Operator, this indicates we have got the first number and need to start storing the second number. See variable 6.

It sounds like there is a lot to do, but if we are smart with the way we work, there is a lot of code that is very similar and we can copy and paste it and then modify it slightly.

You will need 6 variables (for all Sprites) to share:

1. The first number in the calculation (NumberOne), not visible.

2. The second number in the calcualtion (NumberTwo), not visible.

3. The complete sum (Question), visible.

4. The operator (+,-,x,/) for the calculation (Operator), not visible.

5. The result of the calculation (Result), visible.

6. A variable to indicate what number we are working with (SecondNumber). not visible.

Hint: When you press clear, all the variables should be set to blank, except the SecondNumber which should be 0

You will need 17 Sprites, don’t panic! Remember copy and paste is your friend:

11 Number Sprites 0,1,2,3,4,5,6,7,8,9 and the decimal point.

4 Operator Sprite +,-,x and /.

1 Equals (=) Sprite.

1 Clear Sprite.

Scratch code blocks that will be used:

Operators, we will use the join operator a lot as well as the +,-,x and /.

If Else block with variable 6 to decide what number to update.

set variable blocks – lots of these!

Hint:

Start by creating the variables.

Start with just 4 Sprites, 1, +, clear and Equals

Once you can get 1 + 1 working, the rest is quite easy.

The answer is 2 (not 11) by the way, just in case.

Coding Tips:

Here is some of the code that we will be using:

This is the code when you click on a number Sprite, this example is for the number 1, can you see what needs to change if this was the number 2 sprite?

This is the code for the + Sprite

And this is the code in the = Sprite

And finally, the CLR sprite

Tips for CoderDojo Athenry Online Sessions

Using Teams

We are using Microsoft Teams. Each week, we will post links on the CoderDojo Athenry website and Facebook. Here is are the links for 21 November: Information and Links for week 2 | CoderDojo Athenry

When you are using Teams, please keep your microphone off unless you need to ask a question. You can have your webcam on or off, whichever you prefer.

Here are the main buttons you might need:

Two Screens

It is much easier to follow the session if you have two screens, one for the Teams window and one for your own code. Here are two ways to do this:

  1. If your laptop has a HDMI port, you could connect it to a TV with a HDMI cable, or you could connect a spare computer monitor if you have one. Then press Windows and P, and select Extend. Then you can have different windows in each screen.
  2. You could use your laptop for your own code, and connect to the Teams session with a separate phone or tablet.

Asking Questions

As well as the main mentor leading the Teams session, we have other mentors who can answer your questions at any time.

Either: press the Chat button and type your question

Or: press the Raise Hand button and wait for the mentor

If Chat Does Not Work

If you get an error when you try to press the Chat button, it might be because you are logged into a work or school Teams account that has chat restrictions. If so, here is a solution:

  • Press Leave to leave the CoderDojo session
  • Sign out of Teams – click on your picture in the top right corner to open a menu, and Sign Out is at the bottom of the menu
  • Click on the link to join the CoderDojo session again, and this time join as a guest without logging into your school/work account.

Advancers – Plan for Clock.

This weeks challenge is to build a working clock.

This is not just an ordinary clock though, we are going to build a clock that works in the same way as the Railway clocks works in Switzerland.

These clocks work in the following way:

  • The Clock waits for a signal from the master clock
  • When it gets the signal, it moves the minute hand on by one minute (and the hour hand if necessary)
  • then the second hand moves round once in about 58 seconds
  • It then waits for the signal again from the master clock.

This means that all the clocks on all the Stations are synchronised exactly.

In Computer speak this is called Event Driven Programming, where the code simply waits for an Event before doing anything.

So what’s the plan?

We need 4 Sprites

  1. For the Clock Face
  2. For the Hour Hand
  3. For the Minute Hand
  4. For the Second Hand

You can create them however you want but this is what the Swiss railway clocks look like and I will try and create something similar.

Remember one thing, when creating the Sprites make sure they are centred correctly.

So, the clock face should be perfectly centred and then the hands should be centred near one end something like this, I have highlighted where the centre is, with the green circle.

The code

Remember this will be event driven, so we will be using Broadcasts a lot. We will also have to calculate how far to move each hand, this means we will be using the number 360 a lot as that is one complete circle.

So just to let you know how far each hand should move:

  • The Second hand will move 360 degrees for each event.
  • The Minute hand will move 6 degrees for each event (360/60 minutes)
  • The Hour hand will move 0.5 degree for each event (360/60 minutes/ 12 hours)

The first event will be broadcast from the Stage:

The Minute hand will receive this broadcast and move 6 degrees it will then broadcast another 2 events, one to the Hour hand and one to the second hand so they can move.

This is the code for the Minute hand which should be enough to work out the rest of the code as well.

The extra code above is to make sure the Minute hand starts in the correct position.

And one final thing which might be a little tricky, but I’ll leave it as a challenge for you, the Second hand should only take 58 seconds to go all the way around.