Demos and Pizza – Christmas 2018

Here are photos from our Christmas party and Show & Tell day at CoderDojo Athenry on 08 December 2018.

This slideshow requires JavaScript.

It was fantastic to see the things that our young people had created.

We are very grateful to our supporters in the community around Athenry:

  • Clarin College and Principal Ciaran Folan, who are so generous with their space every week
  • Galway & Roscommon Education & Training Board, who provide us with an annual Youth Club Grant
  • HEA (Higher Education Authority) and NUI Galway School of Computer Science, who provide us with funding towards equipment.
  • Medtronic and Declan Fox, who have provided us with a grant linked to Declan’s volunteering
  • Hewlett Packard Enterprise and Mark Davis, who provide us with loaner laptops
  • Boston Scientific and Kevin Madden, who provide us with the loan of 3D printers.
  • Supermacs, who gave us a great deal on the food for the Christmas party

And of course, we are eternally grateful to our wonderful mentors, and to the parents who come along with their children every week. Thank you!

Advancers – Program + Recursion

Introduction

This week we looked at both the Progam project and the Recursion (Branching) project. with a plan to get the output of the Recursion project be the input of the Program project.

The 2 Projects

Program Project

The Program project that we did a couple of weeks ago can read a list of commands and get Scratch to perform those commands. We programmed it to be able to:

  • Put the Pen Up or Down (P:0 or P:1)
  • Move some steps (M:100, where 100 is the number of steps)
  • Turn in a different direction (T:90, where 90 is how far to turn)

Each Command was identified by the First Letter.

Recursion Project

The Recursion project that we did last week can draw a branching Tree pattern. The commands it uses to draw the Tree are:

  • Pen Up and Down
  • Move some steps
  • Turn in a different direction.

Joining them together

The Recursion Project changes

You can see that the Recursion project using the same commands as the Program project, but in order to get the commands from the Recursion project to the Program project we have to add some code to the Recursion project.

First job is to create a List, we called it Commands as it will store all the commands that we have run.

CommandsList

We then need to read through the code and wherever there is a Pen Up, Pen Down, Move or Turn we need to add an item to the Commands list.

This is the code and I have highlighted where

You can see that I have marked 7 places where we need to add code to Insert into commands.

AllCodeMarked

When the Inserts are added the code will look like this, just remember that the Insert has to put in the Command letter that Progam needs Joined to the same action that the Recursion code is doing. All the entries go in the last place in Commands.

GreenFlagCommands

 

You can see that we have added a delete all to start and then after the Pen down we have added a P:1 to the last place in Commands.

On the Pen up we have added a P:0 to the last place in Commands.

 

 

Then we did the same to the Code that did the drawing of the Branches.

CustomBlockCommands

 

Notice that all the Inserts use a JOIN block, the first section is the Command letter that the Program project is expecting, the second section is the exact same code from the code block above.

For example when the code turns Degrees * -2 the insert also has Degrees * -2 in the second section of the JOIN.

 

 

 

 

 

If we run the Recursion Program now, the Commands list will end up with lots of commands, if you have 10 Branches it creates 5117 Commands!

CommandsPopulated

 

You can see that Commands starts with a Pen Down (P:1) and then starts all the Moves (M:…) and Turns (T:…) and when the Tree is finished there are 5117 items in Commands.

 

Next step is to Export the Commands to a file. This is simply a case of Right Clicking on the Commands List and selecting Export, just make sure you add a .txt to the file name and also remember where you saved it!

The Program Project changes

Now we switch projects and open the Program Project.

First thing we changed was to remove all the test code, add some instructions and move the broadcast Play to when the space key pressed.

Instructions

Next step, click the green Flag and follow the instructions.

So right click on the Program List and Import the file that you Exported from the Recursion Project. And then press the Space key…

FirstTest

Hmm, not quite what we were expecting, but close, the Tree is on it’s side and the drawing has started in the centre of the screen rather than at the bottom.

This test has highlighted a number of problems with our Program Project. We don’t have any code to set the Direction of the Sprite or the X and Y Positions.

Well that is easy to fix, we just add some more Command Letters to our Programming code:

  • D:nnn – This will set the Direction to point in, where nnn is the Direction to point in.
  • X:nnn – This will set the X Position, where nnn is the X position.
  • Y:nnn – This will set the Y Position, where nnn is the Y Position.

This gave us 3 more IF sections in our code like this:

NewCommands

 

 

 

You can see that the new commands are almost the same as the old ones, we just change the letter we are looking for and the code block that gets run if we find one of the New letters.

So D:0 for example will run the Point in Direction code with the value 0 (Up).

 

 

The Recursion Project – more changes

Now this where we have to jump back to the recursion project and add some more Inserts so we can set the correct direction and the correct X and Y positions. Again this is not too difficult, we just look for code that sets the direction or X and Y Positions and add some Inserts into the Command list.

ExtraInserts

 

You can see 3 extra insert code blocks, 1 for the point in direction code and 2 for the go to x: y: code block. We have to add 2 here because our Program project is very basic and doesn’t know how to do a Go To…

 

 

 

 

The Commands List will now get 3 new entries at the beginning and have a total of 5120 commands now. Don’t forget to Export this new list to test the Program project again.

ExtraCommands

And Finally

Program Project – test 2

Now that we have the Recursion project writing out the extra Direction and X and Y commands we can test again in the Program project.

And, test 2 is a little better than test 1.

SecondTest

 

It’s still not perfect, the line is all the same thickness and the colour is always the same.

But you could easily add some more Program letters to add this extra functionality.

 

 

Notes:

As always the code is on the Scratch web site, I have added 2 projects that should produce the results you see above:

  • ClassVersion-Program
  • ClassVersion-Recursion

User Id : cdadvancers1819

Password : advancers

Advancers – Recursion (Broccolli!)

Introduction

This week we created another drawing program using recursion, code that calls itself.

This drawing program will draw a Tree with 2 number of Branches, each Branch will split in 2 and be a little smaller than the previous Branches, The Branches will split X number of times. The finished picture will look something like this when X = 5:

Tree5

 

You can see that each branch splits into 2 new branches which are a little thinner and a little shorter than the previous branches, just like a real tree.

 

 

The Plan

Very simple plan for this one, we wanted to be able to control:

  1. the amount of branches
  2. how many degrees the split should be
  3. and what size the first branch would be

So we created a variable for each of these and left them on the Screen as a Slider. We set some minimum and Maximum values as well.

  1. Branches (1-10)
  2. Degrees (0-180)
  3. Size (30-100)

Sliders

The Code

As always we have some code that initialises everything when the Green Flag is clicked.

GreenFlag

 

We point upwards, we go to the middle of the bottom of the screen, clear everything, set the Pen colour and then call our code with the values from the Sliders.

Improvement : This should be “When Spacebar Pressed”, then we could just adjust the Sliders and then click the Spacebar to see the next tree.

 

The recursive code

This is the code that calls itself, because the Branching code is just the same thing repeated over and over again, but with slightly different values (the branches are getting smaller) it is ideal to use recursive code. You just need to remember that the code next to be able to finish.

CustomBlock

The code has two values sent in the number of branches and the size of the branches.

First thing we do is check to see if the number of branches is > 0 otherwise we exit, this is our way to finish the code.

We move (draw the branch), turn and then call ourself with slightly different values.

Just for a bit of variety we change the Pen colour each time as well.

 

This results in some quite nice Trees 🙂

SampleTree

Notes

The project that we built is available on the Scratch Web Site:

User Name : cdadvancers1819
Password : advancers

Project : ClassVersionRecursion

Remember, you can put your own projects up there as well if you want.

 

Advancers – Calculater

Introduction

Todays project is a Calculator that will be able to do simple addition, subtraction, multiplication and division.

There will be a Sprite for each number button and for each type of sum, plus an equal and a clear button, so lots of Sprites. The finished Calculator might look something like this:

CalculatorFull

The Plan

As always, it’s a good idea to have a think about what Sprites, Variables and Code you might need, having a think about the Calculator, we came up with the following list:

  • Sprites
    • 1 Sprite for each number button and one for the decimal point, so 11 in total.
    • 1 Sprite for each of the sum buttons, +, -, X and / so 4 in total.
    • 1 Sprite for the equals button.
    • 1 Sprite for the clear button.
  • Variables
    • 2 Variables, one for each number in the sum.
    • 1 Variable for the sum type.
    • 1 Variable for the full sum being calculated.
    • 1 Variable for the answer.
    • 1 Variable to indicate which number variable we should use.
  • Code
    • Code for a number buttons.
    • Code for the sum type buttons.
    • Code for the equal button.
    • Code for clear button. 

We also thought that it would be a good idea to complete only 1 number button and 1 sum type button and make sure that was all working before adding the rest of the buttons.

The Variables

We created all the variables we would need first:

Variables 

  • Variables
    • NumberOne – this is for the first number in the sum
    • NumberTwo – this is for the second number in the sum
    • Flag – this is to indicate which number we should be using when a button is pushed.
    • Operator – this is to indicate what sum, + – X or / we should be doing.
    • Question – this is to hold the complete sum, e.g. 10+23
    • Answer – this is to hold the answer, e.g 33

The First 3 Sprites

To get things started we created a number Sprite, a plus (+) Sprite and an equal Sprite

All the Sprites are very simple, just a square with text in the middle, just remember to make sure that there is a background colour as well, so the When Clicked code will work correctly.

The code for the Number Sprite looks like this:

NumberCode

The code will check the Flag variable and then add 1 to either the NumberOne or NumberTwo variable, it will also add 1 to the Question variable.

Note that the number 1 is added to whatever is already in the number or question variables.

 

The code for the + Sprite is very simple:

OperatrorCode

We just set the Flag to indicate that we should move on to NumberTwo, we set the Operator to + and finally we put the + in the Question as well.

 

 

The code for the equal Sprite again is quite simple as we only have one sum type.

EqualCode

We check the value of the Operator and if it is + we add the NumberOne and NumberTwo variables together and put the result in the Answer Variable.

 

The other Numbers and Sum types

Once we had the number one, the + and the equal Sprites working it was quite simple to copy and create the other number Sprites. The process was:

  • Right click on the Number One Sprite and Copy it.
  • Change the Costume of the Sprite to the next Number.
  • Change the code of the new Sprite to the next Number.

The bits of the code that we changed are circled in red here:

NumberCodeChanges

The other sum types we did the same way, copy the + Sprite and adjust the code circled in red:

OperatrorCodeChanges

As we added the different sum types we also had to add more code to the Equal Sprite, which ended up looking like this, where there is one IF for each sum type:

EqualCodeAll

The Clear Button

In order to do more sums we also added a clear button, again it is a simple Sprite with some text on it, the code looked like this:

Clear

This code was placed on the Stage, as we needed to run it when we clicked on the Green Flag as well as when we clicked on the Clear Sprite.

Notice that most of the variables start with nothing in them, so they are blank, it is only the Flag that needs to have 0 in it.

 

 

 

Notes

The project that we built is available on the Scratch Web Site:

User Name : cdadvancers1819
Password : advancers

Project : Class-Calculator

Remember, you can put your own projects up there as well if you want.

Advancers – Programming

Introduction

We used Scratch to build our own Programming Language

Scratch used different blocks for different commands, so we decided to write our own Programming Language that would then call the different blocks. This may sound strange, but what it means is that we can have a simple and generic Scratch Program that can run code written in a simple file.

The Plan

  • Describe how our language would work.
  • Create a List variable to hold all our commands.
  • Create a variable to hold the parameter value.
  • Write some test commands to the List variable.
  • Write some code to get the parameter from our commands.
  • Write some code to translate our commands to Scratch commands.

First job was to describe how our language would work with Scratch, we decided that our Programming Language would be able to Draw pictures using the Pen Down, Move, Turn and Pen Up controls.

So we needed 4 commands in our Language, we decided that all the commands would use the same format:

  • First Letter would indicate the command
  • Second Letter would be a colon “:”
  • The rest of the command would be the parameter to use with the corresponding Scratch command.

For example to Move the Sprite 10 steps we would use:

M:10

 To Turn the Sprite 90 degrees we would use

T:90

To put the Pen Up or Down we would use:

P:1 for Pen Down
P:0 for Pen Up

And then we wrote some test code to put some of these commands in to our list variable.

TestCommands

If you look closely you can see that the commands should draw a square, Pen down, Move 100, Turn 90 and so on until we have the square drawn.

 

 

 

This code was put under a When Green Flag temporarily for testing.

We then moved on to the code that would get the parameter value from the command, for example the command M:100 the Parameter is the 100 part. We used a Custom Block for this called P1. Which looked like this:

P1

We send in the full command (M:100 for example) and then we read each letter and if we are on the 3rd letter or more, we add the letter to the P1 Variable, this is similar to what we did for the Calculator numbers.

 

 

 

The last piece of the puzzle was to add some code to read every item in the List and process each command, again this was very similar to the Calculator where we have an IF block for each possible command. Something like this:

Play

 

We read all the items in the Program List and we check the first Letter, this will tell us what Scratch block that we need to use to run the code.

You can see for each item in the Program List we call the P1 block to get the Parameter value, which we then use in the Scratch Block.

 

 

 

 

This is what the project looks like when you run the Test Program:

FinalRun

Notes

The project that we built is available on the Scratch Web Site, note that I added a couple more commands Pen Colour and Pen Width as we may need these at some point.

User Name : cdadvancers1819
Password : advancers

Project : ClassVersionProgramming

Remember, you can put your own projects up there as well if you want.

Advancers -Boiling Water

Introduction

This week we looked at what happens to water molecules when they are heated up.

We started with a little science experiment to demonstrate Brownian Motion, this was done with a glass of very hot water and a glass of very cold water and some ink.

When the ink is dropped in the two glasses it behaves very differently, in the cold water the ink stays suspended and visible as ink for a long time, but in the hot water the ink gets mixed into the water molecules very quickly, this is because the water molecules in the hot water are moving around much faster and bashing into the ink molecules and mixing them up.

BrownianMotion

Can you guess which glass has the cold water in?

The Plan

The plan was to build a scratch program that would  show the water molecules moving around faster or slower, depending on temperature. In order to do this we needed the following:

  • A Sprite for our water molecule
  • A slider to control the temperature
  • Some code to make them move around.

The Sprite

Water molecules are made up of 2 Hydrogen atoms and 1 Oxygen atom (H2O), the Oxygen atom is quite large compared to the Hydrogen atoms and the Hydrogen atoms stick to the Oxygen atom at about a 45 degree angle, they end up looking like Mickey Mouse, so our Sprite looked something like this:

Sprite            SpriteSettings

We changed the settings of the Clone so it didn’t rotate.

The Temperature Slider

In order top control the temperature we created a variable, making sure that it was set for “All Sprites” and that it was set to be a slider. We also set the minimum and maximum values:

TempSlider

The Code

As we needed lots of these Sprites we decided to use the Create Clone block (Control) to create 100 of them.

In order to move the Sprites around we needed to keep looping, picking a random direction and then moving a little bit. We also needed to change the amount we moved and also the direction as the temperature went up. The direction needed to be more upwards as the temperature got higher so the water molecules would start floating like steam if the temperature got high enough.

We used a Gravity variable to make sure the Sprites pointed upwards as the temperature got higher, because this needed to be different for all the Sprites so they moved in random directions, we created the Gravity variable “For this Sprite only”

The code ended up looking like this:

GreenFlagCode

 

Initialise the Temperature variable and then create 100 clones.

 

 

 

CloneCode

 

Initialise the Sprites Gravity variable

Pick a random spot along the bottom of the Stage

Make sure we are pointing more towards the top, depending on the temperature.

 

 

If the temperature is > -1 move around, otherwise we are frozen, so just go back to the bottom of the screen.

 

 

Notes:

The project that we built is available on the Scratch Web Site:

User Name : cdadvancers1819
Password : advancers

Project : Class-BoilingWater

Remember, you can put your own projects up there as well if you want.

 

 

 

 

Advancers – Gravity

Introduction

This week we decided to create a Lunar Lander game that demonstrated the effects of Gravity.

The Plan

As always we started with a plan:

  1. A Spaceship Sprite with 4 Costumes
    1. No power
    2. Up Rocket firing
    3. Left Rocket firing
    4. Right Rocket firing
  2. Buttons to control the Space Ship
  3. Stage which should be a picture of the moon.
  4. A landing pad to land on – just draw on the Stage
  5. Code to control the Space Ship
    1. 3 Variables, to store Gravity, Power and LeftRight information.

Space Ship Sprite

This what mine looked like:

SpaceShipSprite

Space Ship Sprite

 

 

 

The Left and Right costumes can be confusing, to move left, the flame needs to come out of the right, and to move right the flame needs to come out of the left hand side.

 

 

 

 

 

 

Stage

My Stage looked like this:

Stage

 

One thing to remember is to have the landing pad in a different colour.

Buttons and Code

I’ll put these 2 parts of the plan together as it makes more sense.

We decided to use 3 different buttons to control the Space Ship

  1. Up Arrow – This would fire the rocket at the bottom of the Space Ship
  2. Left Arrow – This would fire the rocket on the right side of the Space Ship
  3. Right Arrow – This would fire the rocket on the left side of the Space Ship

And now the code.

We needed code for each of the buttons, code to move the Space Ship and code to know when we have landed. This meant we had lots of small pieces of code all running together in Green Flags with forever loops.

We also decided that we would need 3 variables to store information so we could work out how far to move the Space Ship.

  1. Gravity – This would change as the Space Ship got higher, just as real gravity does.
  2. Power – This would change when the Up arrow was pressed and also when nothing was happening
  3. LeftRight – This would change when the left or right arrows were pressed

And don’t forget if we have variables, we should set them to starting values when the Green Flag is clicked.

Initialise

 

This also has the code that puts the Space Ship in to a starting position. Note the Y value as this is used later in the code to see if we are on the ground or not.

 

For example, when the one of the left or right arrow keys was pressed we would change the Costume and change the LeftRight variable.

RightArrow

 

We did the same for the left arrow. Note that we just add (or subtract for the left arrow) a small amount from the LeftRight variable.

The delay is to make sure that the variable is not updated too fast if the arrow button is held down.

 

For the Up arrow we have to change a different variable

UpArrow

 

Note the wait is much shorter, this is to match the wait in the forever loop that moves the Sprite.

We also change the Power variable by a large amount as this helps with the calculations.

 

Once we had the buttons working we could move on to the Code that moved the Sprite.

The Left or Right movements were easy, that would just be the amount in the LeftRight variable.

The Up or Down movements were a little trickier as we had to account for Gravity as well. So we just used the Y position of the Sprite and added 180 (to make it a positive number). This meant that Gravity changed as the Sprite moved up or down, which is exactly how Gravity works in real life.

This is how the code ended up

MainForeverLoop

 

We move first and then check how high we are.

If we are above the ground, we know this by checking that we are above the starting position of the Sprite, then we adjust Gravity and adjust the Power down.

Note the wait is the same as the Up Arrow code.

Also, if we are on the ground, we set Gravity and Power to 0.

 

 

There was one final piece of code that we didn’t do but I have added here, this was to check if we had landed and if we had, display a message and end.

It was just another Green Flag with a Forever loop and we kept checking to see if we were touching the colour of the landing pad.

Landing

 

Not much here, but might be better if there was a wait as well.

 

 

 

Finally, if you want to see all the code in one go, here it is

AllCode

Notes:

The project that we built is available on the Scratch Web Site:

User Name : cdadvancers1819
Password : advancers

Project : Class-Gravity

Remember, you can put your own projects up there as well if you want.

Advancers – Piano

Welcome to all the new Advancers.

For our first week we built a Piano, which you could play manually or record a tune and then play it back.

We started with a basic plan:

  • 1 Piano Sprite
  • 3 Button Sprites
    • Record
    • Stop
    • Play
  • A list to store all the possible Piano notes.
  • A list to store the tune being played.

Luckily Scratch comes with a Piano Sprite, which we used and expanded it to fill the width of the screen.

PianoSprite

Next step was to create the list of all the notes, there are 14 keys on the Piano so we need at least 14 notes in our list.

We found out what notes are possible by using one of the Sound blocks and looking at what was possible

PossibleNotes

This gave us our list of possible notes:

NotesList

Now on to the code…

We needed to work out what key on the Piano had been clicked, and convert it to a number between 1 and 14 so we could play the correct note from the list.

This required some tricky calculations, to convert the Mouses “X” position to a positive integer between 1 and 14.

  • First we added a number to make X always positive
  • Second we divided that by the size of a note.
  • And finally we rounded it up, using the ceiling function.

This ended up with the following code and a couple of Variables to store the “Extra” number to make X positive and the size of a note:

NoteClickedBasic

Once we had the positive integer we could use it to select the correct note to play from the list:

NoteClickedMedium

We did start some of the Buttons, and we will complete them next week. Notes for the buttons will be included then.

Buttons

In order to make the Piano a bit more usable we added 3 Buttons:

  1. Record
  2. Stop
  3. Play

All three Buttons had two costumes, we used the second costume to change the colour of the Button, this made it easy to see if you had clicked the button or not.

The Record button, simply set a Data Flag to indicate to the Piano code that it should “record” the notes being played in a List variable.

It also flashed while recording was “on”, this is the code for the Record Button:

RecordButtonCode

We also had to add some additional code to the Piano to make sure the notes were recorded:

RecordPianoCode

The Stop button was quite simple, we just set the Data Flag back to 0, and changed the costume for a short while to make it clear that the button had been pressed.

StopButtonCode

The Play button was a little more complex as it need to read all the items in the List and play the correct notes. It also flashed while playing. This is the code from the Play button:

PlayButtonCode

The Final project looked something like this, you can get a copy from the Scratch Web Site, see the Notes below.

PianoStage

Notes:

Note: My version of the project has been uploaded to https://scratch.mit.edu you can Sign in using the following details:

  • Username : cdadvancers1819
  • Password : advancers
  • Project Name is : Class-Piano

CoderDojo Athenry Information Session, Sept 2018

Slide2

Thanks to everybody who came along for our information session last Saturday the 15th September 2018.

Michael introduced us to the CoderDojo movement and spoke about CoderDojo Athenry and what we have planned for 2018/2019. His slides are here: CoderDojoAthenry-InfoSession-2018-Sept (PDF).

Martha then spoke about our shop, where we sell tea/coffee with biscuits for €2.00 or €1.50 if you bring your own cup, with all profits going towards equipment etc. for our CoderDojo.

Julie then talked about our loaner laptops where we provide laptops for people who don’t have their own. Speak to Julie or any of the mentors for more information.

Slide13

This year, we have 5 different rooms with different topics in them, for different levels of experience and age.

Explorers- led by Martha for Beginners from around age seven. Here are Martha’s slides CDA-WeeK_01_Information Session.

Advancers- led by Oliver for kids who have already been through Explorers. Here are Oliver’s slides Advancers2018.

Creators- led by Kieran and Mark for older kids who have been through Explorers and Advancers or have other coding experience. Here are Kieran and Mark’s slides Creators-2018-Intro.

Bodgers- Led by Declan also for older kids who have also been through Explorers and Advancers or have other coding experience. Here are Declan’s slides bodgers_introduction.

Hackers- led by Michael for older teenagers who have been through Creators and Bodgers. Here are Michael’s slides Hackers-Intro

You can find more on the About page of this website: https://coderdojoathenry.org/about/  and our schedule for 2018/2019 at https://coderdojoathenry.org/schedule/

We look forward to you joining us!